Evaluating probabilistic programming and fast variational Bayesian inference in phylogenetics

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Automated Variational Inference in Probabilistic Programming

We present a new algorithm for approximate inference in probabilistic programs, based on a stochastic gradient for variational programs. This method is efficient without restrictions on the probabilistic program; it is particularly practical for distributions which are not analytically tractable, including highly structured distributions that arise in probabilistic programs. We show how to auto...

متن کامل

Bayesian Inference in Molecular Phylogenetics

"o. ~ ,1:. 200<;. 1--. \\.B~~ ~ ,~ ~~c..("" ." V I P '7\rt~ . :r~ M~l(.$ 4 ~~oV\ "",cJ.f"-1'~~'/ (~~. O. Gaswd) . O'6~ ~"'\v. tp,~ss.,~ I (Jf. b~O~ [49] Swofford, D., Olsen, G.J., Waddell, P.J., and Hillis, D.M. (1996). Phylogenetic inference. In Molecular Systematics (2nd edn) (ed. D. Hillis, C. Moritz, and B. Mable), pp. 438-514. Sinauer, Sutherland, MA. [50] Thorne, J.L., Goldman, N., and Jo...

متن کامل

Stan: A probabilistic programming language for Bayesian inference and optimization∗

Abstract Stan is a free and open-source C++ program that performs Bayesian inference or optimization for arbitrary user-specified models and can be called from the command line, R, Python, Matlab, or Julia, and has great promise for fitting large and complex statistical models in many areas of application. We discuss Stan from users’ and developers’ perspective and illustrate with a simple but ...

متن کامل

Sampling for Inference in Probabilistic Models with Fast Bayesian Quadrature

We propose a novel sampling framework for inference in probabilistic models: an active learning approach that converges more quickly (in wall-clock time) than Markov chain Monte Carlo (MCMC) benchmarks. The central challenge in probabilistic inference is numerical integration, to average over ensembles of models or unknown (hyper-)parameters (for example to compute the marginal likelihood or a ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: PeerJ

سال: 2019

ISSN: 2167-8359

DOI: 10.7717/peerj.8272